做题网站推荐: OpenJudge VIJOS UOJ CF JOYOI CODEVS 洛谷 RQNOJ BZOJ POJ HDU

本站题目推荐: 高精度 模拟 排序 递推 贪心 递归 搜索 动态规划 数学 图论 数据结构 实名认证 卡评测举报

输入输出 变量类型 顺序结构 选择结构 循环结构 一维数组 NOIP 资源下载


问题 1385. -- NOIP2013:车站分级

1385: NOIP2013:车站分级

时间限制: 1 Sec  内存限制: 128 MB
提交: 35  解决: 21
[上一题][提交][讨论版][状态][下一题]

题目描述

一条单向的铁路线上,依次有编号为1, 2, …, n的n个火车站。每个火车站都有一个级别,最低为1级。现有若干趟车次在这条线路上行驶,每一趟都满足如下要求:如果这趟车次停靠了火车站x,则始发站、终点站之间所有级别大于等于火车站x的都必须停靠。(注意:起始站和终点站自然也算作事先已知需要停靠的站点)
例如,下表是5趟车次的运行情况。其中,前4趟车次均满足要求,而第5趟车次由于停靠了3号火车站(2级)却未停靠途经的6号火车站(亦为2级)而不满足要求。

现有m趟车次的运行情况(全部满足要求),试推算这n个火车站至少分为几个不同的级别。

输入

第一行包含2个正整数n, m,用一个空格隔开。
第i+1行(1≤i≤m)中,首先是一个正整数si(2≤si≤n),表示第i趟车次有si个停靠站;接下来有si个正整数,表示所有停靠站的编号,从小到大排列。每两个数之间用一个空格隔开。输入保证所有的车次都满足要求。

输出

输出只有一行,包含一个正整数,即n个火车站最少划分的级别数。

样例输入

[Sample 1]
9 2
4 1 3 5 6
3 3 5 6
[Sample 2]
9 3
4 1 3 5 6
3 3 5 6
3 1 5 9

样例输出

[Sample 1]
2
[Sample 2]
3

提示

对于20%的数据,1 ≤ n, m ≤ 10;
对于50%的数据,1 ≤ n, m ≤ 100;
对于100%的数据,1 ≤ n, m ≤ 1000。


提示:本题数据较简单。


NOIP2013普及组第四题

标签

[上一题][提交][讨论版][状态][下一题]